萝卜建站是国内专业的分类信息网!
广告也精彩广告也精彩
网站首页 > 培训信息 > 教育培训 > 三角形余弦定理公式及证明

三角形余弦定理公式及证明

编辑: 杨普义 2020-09-01 08:33:59 阅读 15945

余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。

三角形余弦定理

什么是三角形余弦定理

三角形余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值。

三角形余弦定理的公式

对于边长为a、b、c而相应角为A、B、C的三角形,有:

a2=b2+c2-bc·cosA

b2=a2+c2-ac·cosB

c2=a2+b2-ab·cosC

也可表示为:

cosC=(a2+b2-c2)/ab

cosB=(a2+c2-b2)/ac

cosA=(c2+b2-a2)/bc

这个定理也可以通过把三角形分为两个直角三角形来证明。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。

三角形余弦定理的证明

平面向量证法(觉得这个方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本来还是由余弦定理得出来的,怎么又能反过来证明余弦定理)∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-Cosθ

∴c2=a2+b2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c2=a2+b2-2abcosC

即cosC=(a2+b2-c2)/2*a*b

同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

平面几何证法

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC2=AD2+DC2

b2=(sinBc)2+(a-cosBc)2

b2=(sinB*c)2+a2-2accosB+(cosB)2c2

b2=(sinB2+cosB2)c2-2accosB+a2

b2=c2+a2-2accosB

cosB=(c2+a2-b2)/2ac

萝卜建站小编推荐你继续浏览:高中数学三角函数诱导公式大全
高中数学不等式与不等式组的解法
高考数学轻松突破120分的方法
怎样学好高中数学数列
数学不好不要方,干了这碗方法汤!

本文最近获得5945个赞

最新版权声明:萝卜建站提醒您:在浏览本本网站关于三角形余弦定理公式及证明信息时,请您务必阅读并理解本声明。本网站部分内容来源于网络,如您认为本网不应该展示与您有关的信息,请及时与我们取得联系,我们会尊重您的决定并当天作出处理。

相关教育培训

热门教育培训